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Abstract

A fundamental question of longstanding theoretical interest is to prove the lowest exact
count of real additions and multiplications required to compute a power-of-two discrete
Fourier transform (DFT). For 35 years the split-radix algorithm held the record by requiring
just 4nlogy n — 6n + 8 arithmetic operations on real numbers for a size-n DFT, and was
widely believed to be the best possible. Recent work by Van Buskirk et al. demonstrated
improvements to the split-radix operation count by using multiplier coefficients or “twiddle
factors” that are not n'” roots of unity for a size-n DFT.

This paper presents a Boolean Satisfiability-based proof of the lowest operation count
for certain classes of DFT algorithms. First, we present a novel way to choose new yet
valid twiddle factors for the nodes in flowgraphs generated by common power-of-two fast
Fourier transform algorithms, FFTs. With this new technique, we can generate a large
family of FFTs realizable by a fixed flowgraph. This solution space of FFTs is cast as a
Boolean Satisfiability problem, and a modern Satisfiability Modulo Theory solver is applied
to search for FFTs requiring the fewest arithmetic operations. Surprisingly, we find that
there are FF'Ts requiring fewer operations than the split-radix even when all twiddle factors
are n' roots of unity.
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1. Introduction

In 1965 Cooley and Tukey[7] started a revolution in digital signal processing when they in-
troduced their fast Fourier transform algorithm (FFT). Their FF'T required only O(nlogn)
addition and multiplication floating-point operations on real numbers, or FLOPs, rather
than the O(n?) FLOPs required to directly compute a discrete Fourier transform. Al-
though discovered previously[15][29], it was Cooley and Tukey’s timing, which coincided
with the beginning of widespread use and availability of digital computers, that led to its
success. The FFT and related algorithms have now found a wide range of application, in-
cluding electroacoustic music, audio signal processing, medical imaging, image processing,
pattern recognition, computational chemistry, error correcting codes, spectral methods for
PDEs and harmonic analysis[3][29].

* Preprint submitted on March 28, 2011, to the Journal on Satisfiability, Boolean Modeling and Compu-
tation.



After the FFT’s introduction, there was considerable work on further lowering the FLOP
count. This was of particular interest since addition and especially multiplication were
expensive with the computer hardware available at that time. One result that stands out
is the work done by Yavne[34] in developing an initial split-radix[10][32] algorithm with a
4dnlogsn — 6n + 8 FLOP count for a size-n FFT where n is some power of two, n = 2.
Other important work minimized the number of multiplications but not the total arithmetic
complexity[17][18][9][33]. In 2004 Van Buskirk et al.[22] demonstrated improvements to
the split-radix operation count by using using multiplier coefficients or “twiddle factors”
that are not n' roots of unity for a size-n DFT. Two other papers[1][19] generalized this
work and derived new algorithms with a modest (~ 5.6%) reduction in FLOP count when
compared to the split-radix, requiring roughly %‘Ln logy n operations rather than the previous
4dnlogyn — 6n + 8.

This paper presents a proof of the lowest FLOP count for certain classes of DFTs. It is
beyond the scope of this paper to consider all possible DF'Ts in our proof. Instead, we focus
on the common power-of-two complex FFTs and the flowgraphs[5] implied by them. This
scope still includes a rich set of FFTs as our experiments confirm what others have seen[10];
common power-of-two complex FFTs (radix-2, radix-4, decimation-in-time or decimation-
in-frequency split-radix, conjugate split-radix, classic or any twisted) all exhibit the same
flowgraph structure (they are graph isomorphisms) but have different twiddle factors as-
signed to the flowgraph nodes. Furthermore, we restrict our scope to FFTs where twiddle
factors are n'® root of unity. This excludes the algorithms derived from Van Buskirk’s
work, but we still show that other algorithms with lower FLOP count than the traditional
split-radix exist.

In 1962, a few years before Cooley and Tukey introduced their FFT, Davis et al. de-
veloped a machine program for theorem proving[8], now referred to as the Davis—Putnam—
Logemann-Loveland or DPLL algorithm, which is still at the core of modern Boolean Sat-
isfiability or SAT solvers. In the past decade, several advances and refinements to DPLL
have made it practical for larger problems[31][25][13]. New conflict-driven clause-learning
(CDCL) SAT solvers, which incorporate these recent advances, are now commonly used in
industry to verify hardware and software correctness. Current SAT research benefits from
industrial sponsorship and an active community, which organizes conferences and com-
petitions, creates challenge problems, and defines problem formats [21][23][28]. Recently,
Satisfiability Module Theories (SMT) generalize SAT beyond binary variables to incorpo-
rate higher-level theories such as bit vectors, lists and arrays[26][28]. SMT solvers range
from those that simply reduce a higher-level theory to Boolean logic for a SAT solver, to
those that extend the core decision procedure to accommodate higher-level theories.

In this paper, we apply a modern SMT solver to find a lowest FLOP count algorithm
for the class of FFTs considered. First, we present a novel way to choose new yet valid
twiddle factors for the nodes in a FFT flowgraph. This technique is more general and
leads to a richer solution space than the twisting[1][24]. This solution space of FFTs is cast
as a SAT problem using quantifier-free formulas over the theory of fixed-size bitvectors,
specified in SMT-LIB 1.2 format[28], and searched with existing SMT solvers[4][12][30][13].
After applying partitioning techniques, we are able to find 6616 FLOP count algorithms for
size-256 FFTs, and 15128 FLOP count algorithms for size-512 FFTs. These numbers are
lower than traditional split-radix, 6664 for size-256 and 15368 for size-512, but not as low



as achieved by those using Van Buskirk’s techniques[1][19], 6552 for size-256 and 15048 for
size-512, due to our constraint that twiddle factors must have modulus one.

Although we supply code for a witness size-256 FFT requiring fewer operations than
a traditional split-radix[16], we are not addressing algorithm design in this paper. An
objective to minimize FLOP count is primarily academic given the capabilities of modern
computing hardware. We use it only as a well-defined and widely-understood objective
to introduce and demonstrate the power of our formulation and search. We believe the
ideas presented in this paper can be used to do FFT algorithm design where Van Buskirk’s
ideas are incorporated, specific hardware is targeted, or other objectives such as overall
performance or accuracy are pursued, but these are the topics of a future paper.

This paper continues with an introduction to the DFT, with emphasis on defining con-
cepts central and unique to this paper. In Section 2, we present a FF'T flowgraph represen-
tation for generating a family of FFTs. This formulation of the solution space is tailored
so that it can be easily cast as a SMT problem. Section 3 introduces a first SM'T problem
formulation and then develops symmetry reduction and partitioning ideas which allows us
to solve larger problems. Finally, we conclude with discussion of our results, application to
FFT algorithm design, and future work.

1.1 Definitions

The DFT (discrete Fourier transform) is a specific kind of Fourier transform whose input
is a sequence of numbers instead of a function. The sequence of numbers is often obtained
by sampling a continuous function. Throughout this paper, let n = 2™, let i> = —1, and
let wy, represent the complex n'" root of unity ¢~1%. The n-tuple of complex numbers
(ao, a1, ag, ...,an—1) is transformed by the DFT into another n-tuple of complex numbers

X (k) according to the formula
n—1
X(k) = Z a;wik.
j=0

It is well-known that the complex size-n DF'T is a linear operator on C™ and can be repre-
sented as multiplication by an n x n Vandermonde matrix. For our purposes, it is better to
identify the entries of the n-tuple with the coefficients of the polynomial

f(x) = a0+ a1z + aza® + -+ + ap_12" " € Cla].

Then computing the DFT for a given n-tuple is equivalent to evaluating the polynomial f
at each of the n'® roots of unity w¥, for k =0, 1,2, ...,n — 1. That is, X(k) = f(w¥). So
each output value of the DFT is a weighted sum of the a;, where the weight of a; in X (k)
is wik.

When an FFT is used to compute a size-n DFT, with twiddle factors of modulus 1,
the product of all the twiddle factors applied to a; in the computation of X (k) equals the
weight w?®. We’d like to keep track of the accumulated weight on any given a; through all
of the intermediate FFT results. To do this, we employ the polynomial view introduced by
Fiduccia in [14] and elaborated by Bernstein in [1] and Burrus in [6]. Associating the input
to a polynomial of degree n — 1 with coefficients a; means that an intermediate FF'T result
is associated to a polynomial of lower degree whose coefficients are weighted sums of the



a;. For example, when n = 8 and

f(x) =ao+ a1z + agx® + azz® + aszt + asz® + agx® + a7a;7,

two of the intermediate results of the Radix-2 FFT are
f mod(x? — wg) = (ap + az + ag + ag) + (a1 + as + a5 + ay)x
and

f mod(a:2 — wé) = (ap —ag + a4 — ag) + (a1 —ag + a5 — ay)x

= (ap + agwg + aq + aﬁwg) + (a1 + a3w§ + a5 + a7w§):p.

Each of the coefficients in the two linear polynomials above is represented by a node in a
flowgraph, which we describe in the next section. First, we define some characteristics of
these coefficients.

Definition 1.1. The base of a coefficient is the a; of lowest index that appears in the
weighted sum comprising that coefficient.

Definition 1.2. The stride of a coefficient is the integer difference between the indices of
any two successive a; in the weighted sum, when the terms of the sum are written with the
indices in strictly increasing order. When the coefficient consists of a single a;, the stride
is defined as n, the size of the DFT.

In the polynomials above, the constant terms have base ag, the linear terms have base
a1, and all four coefficients have stride 2. For fmod (2® — 1) in the example above, each
coefficient a; has base a; and stride 8. For any k, the output value X (k) has base ag and
stride 1.

Definition 1.3. The weight stride, Wy, of a coefficient is the integer difference (mod n)
of the powers put on w, to form the weights on any two successive a; in the coefficient,
when the terms of the coefficient are written with the indices in strictly increasing order.

The Wj of each coefficient in fmod (22 — w§) above is 0. The W; of each coefficient in
fmod (22 —wg) above is 4. For fmod (2®—1) in the example above, there is no combination
of the a; comprising any coefficient, so the W of each of the eight original coefficients is

defined to be zero. The W for X (k) = agw? + ajwk + asw?F 4 - + al" ¥ s k.

n—1

Definition 1.4. The weight on base, Wy, of a coefficient in an intermediate FFT result
is the integer power (mod n) to which w, has been raised to form the accumulated weight
on the base of the coefficient.

The W of each of the four coefficients in the example above, indeed of any coefficient
from the Radix-2 FFT, is zero. To find an example of coefficients with nonzero W} among
the common FFTs, we’ll consider the size-8 Twisted FFT. Given f(x) as in the example
above, the remainder f mod(z? + 1) determines the remainder f(wsx) mod(z* — 1) as



described in [1] and [24]. It follows that one of the intermediate results of the size-8 Twisted
FFT is

f(wsz) mod(z” —1) = (ap — as + wilaz — ag)) + (wslar — as] + wglas — ar))z
= (ag + asw? + agwg + agwd) + (a1wi + azwi + asw + arwd)z.
So we see that the coefficient of the linear term has base a; and W, = 1. This W, as well
as the other definitions from this section are visually summarized in Figure 1.

We=2
W=l ™=
(awg + aswi + aswi + arwd)z
_ t f
base=a; stride=2

Figure 1. Definitions

2. A Flowgraph Representation for
Generating a Family of FFT Algorithms

Signal flowgraphs are a widely used formalism to represent and analyze FFTs [5][3]. In this
section we show how the concepts defined in Section 1.1 occur in flowgraphs of common
power-of-two FFTs. In particular, we will show that each node in a given flowgraph can
be labeled with a 3-tuple, (stride,base, W), which is an invariant for a family of FFT
algorithms that can be realized by that given flowgraph. This invariant can then be used
to generate FFT instances realizable by that flowgraph.

To facilitate the discussion, we show two example flowgraphs. The first, shown in
Figure 2, is Gauss’ original FFT[15][1]. The second, shown in Figure 5, represents a size-16
conjugate split-radix as discussed in [19][20].

2.1 Edges and Nodes

Each directed edge represents the transfer of a complex number, either into or out of a
node. In an algorithmic implementation of the flowgraph, each edge is indeed a single
concrete complex number, but for the purposes of our flowgraph analysis, this complex
number should be thought of symbolically as a weighted sum of the a;, where the weight
on any a; is some w;;.

The input operands of the FFT, labeled ag...a,,_1, are shown at the top and the output
values, labeled X (0)...X(n — 1), are shown at the bottom. Unlike traditional FFT flow-
graphs, we use a; instead of z(j) for input operands and show data flow top-to-bottom
instead of left-to-right to facilitate discussion relating this flowgraph to the polynomial
evaluation perspective of the FFT.

Each node represents complex addition and/or multiplication operations applied to the
input operands to generate the output values. Figure 3 shows the internal behavior of a
node. For nodes with two input edges, the two input operands are added to produce the
single complex result id, when viewed concretely. We prefer to view id symbolically, as a
weighted sum of the aj, where the weight on any a; is some w;,. Next, id is separately
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Figure 2. Size-8 Radix-2 DIF FFT Flowgraph

multiplied by two twiddle factors to produce the left and right output values. In Figure
3 the left and right twiddle factors are shown as w!“/P and w/*? respectively but in the
concise node representation as seen in Figure 2 only the integers It fp (left twiddle factor
power) and rtfp (right twiddle factor power) are shown in the bottom row of each node.

We count the cost of multiplication by some twiddle factor w!/? in the traditional way,
where the cost of multiplication by 1,—1,i or —i is free, multiplication by Vi, —v/i, vV/—i
or —/—i is 4 floating point operations (FLOPs), and multiplication by any other n'" root
of unity is 6 FLOPs. In addition to the potential multiplication cost, each node always
requires 2 FLOPs for the cost of the addition.

There is one interesting multiplication cost exception when w?/? and w’*/? are complex
conjugates. In this case, Re (wW!/P) = Jm (wrtP) and Jm (wWP) = Re (WIHP) so that only 4
real multiplications and 4 real additions are needed to weight by both w!*/? and w*/P. In
this case, we tally 6 FLOPs for the weight by w//? and only an additional 2 FLOPs for the
weight by w!*/P. For cases where It fp = rtfp, we tally FLOPs for w!*/? only.

Two separate multiplications by w!/? and w’*/? are never seen in traditional FFTs as
it typically leads to higher cost when counting total floating point operations. Instead, one
multiplication is done and the result may or may not be negated at no additional cost to
generate the second output. In this paper, we adopt the more general description containing
two separate multiplications and will later show how constraints can be applied to prune
the search space to solutions requiring only a single multiplication without detriment to the
final global FLOP count.



/\ Input /\
\/
D

i

wgfp*g Qﬂuzﬁp
. J

/ Output \

Figure 3. Node Internal Behavior

Dotted nodes in the top row of Figure 2 only have a single input operand and con-
sequently there is no internal addition. In this case, the input operand is used directly
as operand id within the node. Nodes in the bottom row of Figure 2 only have a single
output value and consequently there is just a single internal multiplication. In this case,
only a single twiddle factor is specified. Again, traditional FFTs often suppress this final
multiplication as it is typically a cost-free multiplication by 1 or -1. For the generality of
our technique, we always include this final multiplication.

For the class of FFT flowgraphs we are considering, each node has at most two parents
and two children. We adopt dot notation when it is necessary to refer to attributes of
a node’s parents or children. We refer to a node’s left or right parent as nd.lp or nd.rp,
respectively, for a node nd. Likewise, nd.lc or nd.rc refer to a node’s left or right child,
respectively. With this notation, a node’s left parent’s left parent twiddle factor can be
referred to concisely as nd.lp.lp.wP. Note that tfp can be used here rather than ltfp or rtfp
as it is clear from the graph context when tracing edges which twiddle factor applies.

2.2 Flowgraph Properties

Our flowgraph analysis requires that the following two properties be true, which are checked
by computer traversal of the flowgraph.

Property 2.1. There is at most one path from any input operand a; or internal node nd,
to any output value X (k) or node nd,.

Definition 2.1. The subset of input operands a; that can reach a node contains that node’s
original ancestors and is denoted as nd.A for a node nd. The subset of output values
X (k) that is reachable from a node contains that node’s terminal descendants and is
denoted as nd.D for a node nd.

Property 2.2. For any node nd in the flowgraph, when the elements of nd.A are ordered
such that indices are strictly increasing, the difference (mod n) of indices on successive
original ancestors in the list is constant. Furthermore, original ancestors of a node’s left
parent interleave precisely with the original ancestors of the right parent, and the sets are
always disjoint.



Example 2.1. For the node at the end of the third row in Figure 2 labeled with a bold
1.6,
nd.A = {a1,as,as,a7}

when ordered with strictly increasing indices. The integer difference (mod n) of successive
original ancestor indices is always 2 for this example. For the node’s left and right parents,

nd.A =nd.p.AUnd.rp.A
= {a1,a5} U{as, ar}
= {ala as, as, CL7},

which interleave precisely when combined.

Flowgraphs adhering to these two properties are expected given the divide-and-conquer
nature of common power-of-two FFTs. We have built flowgraphs of various size-n for
Radix-2, Radix-4, decimation-in-time and decimation-in-frequency split-radix, Conjugate
split-radix[19] as well as Twisted[l] FFTs, and have always found these properties to be
true. For FFTs with some Radix-4 content, this requires that when adding four numbers,
the addition is factored into a binary addition tree that observes Property 2.2, which is
what is commonly done. For Twisted FF'Ts, different twisting functions ¢ lead to different
permutations of X (k), but these are isomorphisms of the same flowgraph structure. It is not
the point of this paper to prove which FFT algorithms generate which flowgraphs. Instead,
we observe that many common power-of-two FF'T algorithms generate flowgraphs that have
these properties, and we require adherence to develop our flowgraph-based ideas.

2.3 A Node’s base and stride

In the flowgraph shown in Figure 2, the left number in the middle row of each node is the
base index for that node’s id and the number at the left of an entire row of nodes is the
stride for any node’s id, when id is viewed symbolically as a weighted sum. Figure 4 is a
key for all flowgraph labels and Figure 3 identifies the internal edge id.

e R
Wy rWy
stride | base W
ltfp rifp
- J
FLOPs

Figure 4. Flow Graph Node Key

Definition 2.2. A node’s base label, nd.base, is always the index of the base, as defined
in Definition 1.1, for the weighted sum nd.id represented by the node. The number nd.base
is the minimum of nd.lp.base or nd.rp.base. For the terminal case when nd has a single
input operand, nd.base is equal to j for the given input a;.



To facilitate computation of nd.base, later computation of weight on base, as well as
impose regularity on the flowgraph, the following property is enforced in flowgraph diagrams
and computer data structures.

Property 2.3. For any node nd in a flowgraph, the relation (nd.lp.base < nd.rp.base) is
always true.

Definition 2.3. A node’s stride label, nd.stride for a node nd, is always the stride, as
defined in Definition 1.2, for the weighted sum nd.id represented by the node. The number
nd.stride is the absolute difference (mod n) of nd.lp.base and nd.rp.base. For the terminal
case when nd has a single input operand, nd.stride is defined to be n for a size-n FFT.
Property 2.2 ensures that strides are constant and hence a single stride label per node is
sufficient.

Example 2.2. From Example 2.1, we know that for the last node in the third row of Figure
2

)

nd.A = {a1,as,as,a7}.

Ignoring values of applied weights in the flowgraph, the polynomial coefficient represented
by this node must be of the form

nd.id = ajwg + azwg + aswg + arws.

From the discussion in Section 1.1 we can deduce that nd.base = 1 and nd.stride = 2. Also,
we see that nd.lp.base = 1 and nd.rp.base = 3. By Definition 2.2,

nd.base = min{nd.lp.base, nd.rp.base}
= min{1, 3}

and by Definition 2.3,

nd.stride = nd.rp.base — nd.lp.base (mod n)
=3—1 (mod 8)
= 2.

This node’s row in the flowgraph is labeled with 2, the stride. The first label in the middle
row of the node itself is 1, the base.

2.4 Weight on base

The weight on base for every node’s input edge, as well as that node’s weighted sum id, is
recorded in the flowgraph. Even though W} is defined for a true polynomial coefficient in
Definition 1.4, we record the weight on base for both the left and right input edge before
the addition since both are required later to determine a node’s weight stride. As shown
in Figure 4, the top row of each node specifies Wp, the integer power (mod n) to which
wp, has been raised to form the accumulated weight on the base of the weighted sum of a;
represented by the left input edge. Likewise, rW} represents the same for the right input



edge. From Property 2.3, we know that after the addition the base of nd.id is the same as
the base of the left parent and that the addition does not alter weights. Thus, W}, for nd.id
is equal to the weight on base of the left input edge and there is no need for a separate [W.

Definition 2.4. The weight on base of a node’s left input edge is,

Wy _

M (nd.Iparent.w!P)(nd.lparent.wuV?),

nd.w

and likewise for a node nd’s right input edge is,

Wy _

nd.'rparent.wtfp nd.rparent.w’’?).
n n n

nd.w

Following from Definition 2.2 and Property 2.3, the weight on base of nd.id is equal to the
weight on base of the left input edge and both are referenced as Wj,. For the terminal case
when nd has a single input, W, is defined to be zero. Finally, note that W} for all output
values X (k) is always zero as all X (k) contain a constant term with ag that can only be
weighted by w? in any correct DFT.

X(0) X(8) X(4) X(12) X(2) X(10) X(6) X(14) X(1) X(9) X(5) X(13) X(3) X(11) X(7) X(15)

Figure 5. Size-16 Conjugate Split-Radix FFT

Example 2.3. Since weight on base is the result of a series of multiplications by various
roots of unity w?, it can also be viewed as addition (mod n) of the powers on the roots of
unity. This is illustrated by the path shown with bold edges from input operand as to a
node nd with nd.base = 1 and nd.stride = 2 in Figure 5. Then

W,
”d-W% b= w}g’(w%g(w%(ag))),

10



which is a3 multiplied by all twiddle factors along the path, and can be rewritten as

rWy =13+ 12+ 0 (mod 16)
=9.

This rWp, 9, is shown in the upper right corner of the node. Once this path reaches nd,
we no longer keep track of the weight on ag as it is no longer the base of the weighted sum
id. However, it is still essential to keep track of this weight up to this point as it is used to
compute Wi.

2.5 Weight Stride

A node’s weight stride label, Wy, is shown at the right of each node’s middle row, as seen
in Figures 2, 4 and 5.

Definition 2.5. A node’s weight stride label is
nd.Ws = nd.rwy — nd.Wp, (mod n).

For the terminal case when nd has a single input, W; is defined to be zero. The number
nd.Wy is always the Wy as defined in Definition 1.3 for the weighted sum nd.id represented
by the node.

Example 2.4. Again consider the node nd at the end of the bold path in Figure 5 where

nd.Ws = nd.rWy — nd.W (mod n)
=9 —3 (mod 16)
= 6.

This W, 6, appears as the last label in the middle row of this node. We can now reconstruct
exactly the weighted sum of coefficient nd.id. For the node we are considering with stride =
2, base =1, Wy =6 and W, = 3,

. 1 11 1 1
nd.id = a1wis + azwis + aswig + arwis + agwig + a11wig + a13wig + aiswin

Now that a node’s W; is defined, we present a key observation that Wy is invariant
across all FFTs that can be mapped to the given flowgraph. This invariance is central in
defining a family of FFTs that can then be searched for desirable members.

Theorem 2.1. For a size-n FFT flowgraph constructed by any FFT algorithm such that
Properties 2.1 and 2.2 hold, every node’s Wy is an invariant.

Proof. Consider an arbitrary node nd in the flowgraph. Next, consider an arbitrary FFT
output value from this node’s terminal descendants, X (k) € nd.D. For the two input values
U(nd.base) AN A(nd.base)+(nd.stride) 1N the weighted sum X (k), it follows from the definition of
the DFT that these input values must be weighted as

k(nd.base) (mod n k((nd.base)+(nd.stride)) (mod n
a(nd.base)wn( ) ( ) and a(nd.base)Jr(nd.stride)wn(( A D ( )

11



Hence, the weight stride between these input values is

weight stride = k((nd.base) + (nd.stride)) — k(nd.base) (mod n)
= k(nd.stride) (mod n).

Since, by Property 2.1, nd is the only contributor of a(nq.pase) and A ((nd.base)+(nd.stride)) t0
X(k), and they are are bound together by the addition in nd and never will be weighted
again individually, we have

nd.Ws = k(nd.stride) (mod n).
Any other value for nd.W, would produce an incorrect FFT result. O

Example 2.5. Again consider the node at the end of the bold path in Figure 5 with
nd.Ws = 6, nd.stride = 2 and X (3), X(11) € nd.D. Then,

nd. Wy = k(nd.stride) (mod n)
6 =3 x 2 (mod 16)
=11 x 2 (mod 16).

2.6 Canonical Node Labels

Since the three node labels base, stride and W are either defined or proven to be unchanged
by any applied weight w,,, we can now assign a canonical label to each node. For a size-n
FFT flowgraph, the set of canonical node labels defines a family of FF'Ts that can be realized
by that flowgraph. Actual applied weights w,,, interpreted as W3, distinguish members in
the family of FFTs.

Definition 2.6. A node’s canonical label is nd(nd.stride, nd.base, nd.W5).

Example 2.6. Again consider the node at the end of the bold path in Figure 5. This node is
labeled nd(2,1,6) and is the only node with that label in the flowgraph. The nd.stride = 2
appears to the left of the row in which nd(2, 1,6) is found. The nd.base =1 and nd.W, = 6
appear in bold on the node itself.

2.7 Correspondence to the Polynomial View

Although our main representation is a flowgraph, we have relied on the polynomial view of
the FFT to facilitate our discussion. In particular, each edge of the flowgraph represents a
weighted sum of a; and each nd.id a coefficient of the original polynomial modulo one of
its factors, also a weighted sum of a;. We highlight with gray background in Figures 2 and
5 the polynomial factor lattice as described by Bernstein in [1] and shown in Figure 6. The
degree of each polynomial factor is the stride for all flowgraph nodes it contains. The power
to which w,, is raised to form the constant term in that polynomial is the Wg.;q. for all
flowgraph nodes it contains. And finally, each node’s nd.base is the index of lowest degree
among the a; used in the weighted sum represented by that node.

Recall our example for the case n = 8. We associate the sampled data to coefficients of
a degree 7 polynomial:

f(z) = ap + a1z + azz® + azz® + asz® + asz® + agz® + arz”.
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This polynomial is an element of C[x], where we have a division algorithm that gives
f(z) = r(z) mod p(x) when f(x) = q(x)p(x) + r(z), for r(z) of lesser degree than p(x). In
particular, we have f(z) = f(z) mod(z® — 1) because f has degree strictly less than 8. The
residue class of f modulo (2® — 1) determines the residue class of f modulo (z* — 1) and
modulo (z* + 1), as the latter two polynomials are factors of 8 — 1. Given a complete
factorization of % — 1 into distinct, irreducible, linear factors as shown in Figure 6,

/mgl\

| 2t +1

7N N

x?—1 2+ 1 z? +i x2 =i

AVARNAYNA

z+1 z—1 r—i xz+ivi z—ivi x+Vi xz—Vi

Figure 6. Factor lattice of 2% — 1

we have the following isomorphism of rings:
Clz]/(z®—1) = Clz]/(x—1) x Clz]/(z+1) xCz] /(z+1i) x - - - x Cz] / (z+ V) x C[z] /(x — V),

which follows from the Chinese Remainder Theorem, as seen in [11].

So an FFT algorithm is finding an element from the product ring that corresponds to
the given f(x) € C/(2® — 1). Our flowgraph highlights the path of the inputs through
the lattice of factor rings and canonical homomorphisms in Figure 7. The intermediate
polynomials are

f(x)mod(z* — 1) = (ag + a4) + (a1 + as)x + (az + ag)2? + (a3 + a7)z®
f(z)mod(z? +1) = (ap — a4) + (a1 — as)x + (a2 — ag)x® + (a3 — a7)x®
f(z)mod(x? — 1) = (ag + aq + a2 + ag) + (a1 + a5 + a3 + ar)x
f(z)mod(x? +1) = (ap + ag — a2 — ag) + (a1 + a5 — a3 — ar)x
f(x)mod(2? — i) = (ag — a4) + (ag — ag)i + [(a1 — as) + (a3 — az)i]z
f(z)mod(x? + i) = (ag — a4) — (as — ag)i + [(a1 — as) — (a3 — a7)i]z.

Since finding the residue of f(x) mod (z*+1) is equivalent to setting z* equal to —1 = w§

in f(x), we see in the coefficients of f(x)mod (z* + 1) pairs of the original inputs whose
indices differ by 4. Viewing these coefficients as weighted sums of the aj, where the a; are
written with the indices increasing, we note that successive weights change by a factor of
wg = —1. Since finding the residue of f(z)mod (22 + i) is equivalent to setting z? equal
to —i = w? in f(z), we see in the coefficients of f(x)mod (22 + i) four of the original

13



inputs whose indices differ by 2 when listed in increasing order. Viewing these coefficients
as weighted sums of the a;, where the a; are written with the indices increasing, we note
that successive weights change by a factor of w3 = —i.

fl@)eC/(z® - 1)

C/(z* —1)x C/(z* +1)

C/(a? — 1) x C/(a? + 1) x C/(2? + i) x C/(a —7)

Clla—1) X C/(x+1) % x C/(z + i) x C/(z — /i)

Figure 7. Factor rings with canonical homomorphisms

Example 2.7. In Figure 2, the stride = 4 row has two polynomials highlighted, the left
labeled 4 —wg and the right labeled z§ —wg. The right polynomial, x3 —wg, has four nodes
corresponding to the four terms of this new polynomial. The constant term has base = 0,
the linear term has base = 1, and so on, until the last node with base = 3 represents the
coefficient of the 2 term in the polynomial. Since these four nodes arise from x§ — wi, all
nodes in this polynomial have stride = 4. Finally, since the constant term of the factor
polynomial is —wé, written as w, raised to a power instead of the usual +1, all nodes in
this polynomial have a W4, = 4.

This correspondence exists for the original FFT attributed to Gauss[15]. Twisting as
described in [1] implies that we use a different factor lattice for #® — 1. But it is essential
to remember that our flowgraph analysis to derive canonical labels is independent of any
twists and will derive the same canonical labels for a size-n flowgraph regardless of what
twists are applied in the particular FFT used to generate the flowgraph.

In the case of twisting z* + 1 to 2* — 1 in a size-8 FFT, we see that

f(z) = r(z) mod(z* + 1)
= f(x) = q(@)(@" +1) +r(z)
—  f(wsz) = q(wsz)((wsz)? + 1) + r(wsz)
(wsa)(wga! + 1) + r(wsz)

~1)g(wsz)(z* — 1) + r(wsz)

where © = wgz. Taking the polynomial view, the element #* — 1 € C[#] has a factor
tree isomorphic to that of 2* — 1 € C[z]. Whereas the factor ring C[z]/(z* + 1) may be
considered a 4-dimensional vector space over C with basis {1, z, 22, 23}, the new factor
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ring C[z]/(¢* — 1) has basis {1, wsz, (wsx)?, (wsx)3}. So the stride and Wi iqe exhibited
by each set of highlighted nodes in the flowgraph is preserved.

2.8 Generating a Family Member FFT Algorithm

Because Wy is independent of any particular FFT’s twiddle factors, we can use it as the
basis for generating all members of a family of FFT algorithms represented by a given
flowgraph. A valid FFT can be created by randomly picking integer W, values for all
nodes in the flowgraph. Given these choices for W, Wy determines values for rW, for
all nodes in the flowgraph. Next, W, and rW, determine values for all twiddle factors,
and a unique assignment of twiddle factors distinguishes a member in the family of FFT
algorithms. Before we present a more formal algorithm for this process, we must first define
how twiddle factors can be determined from W,

Definition 2.7. Following from Definition 2.4, a node’s twiddle factors, wﬁffp and wfffp,
can be determined from Wj:

(nd.Ip.wP)(nd.lp.wlV?) = nd.w’

nd.lp.wt? = (nd.w’*)/(nd.lp.w!'?).
This can be expressed as (mod n) subtraction of powers:
nd.lp.tfp = nd.Wy — nd.lp.W;, (mod n).
The twiddle factor for a right parent is similarly defined as:

nd.rp.tfp = nd.rWy — nd.rp.W; (mod n).

Example 2.8. Consider the node nd(2,1,6) in Figure 5. For this node, nd.W, = 3 and
nd.rWp = 9 are specified. Also, nd.Ilp.W;, = 0 and nd.rp.W;, = 12 are specified. Hence,

nd.p.tfp = nd. Wy — nd.lp.W}, (mod n)
=3 -0 (mod 16)
=3,

which is the twiddle factor applied to that edge by nd.lp as shown in the Figure. Likewise,

nd.rp.tfp = nd.rWy — nd.rp.W; (mod n)
=9 —12 (mod 16)
=13,

which is the twiddle factor applied to that edge by nd.rp.
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Algorithm 1: How to Generate a Random Member FFT Algorithm
Input: Size-n flowgraph with labeled invariants
Output: Size-n flowgraph with twiddle factors assigned

1 foreach nd € flowgraph do

if nd.stride # n then
nd.Wy, <— rand() (mod n)
nd.rWy < nd. Wy + nd.Ws ( mod n)
else
nd.Wb ~0
foreach nd € flowgraph do
if nd.stride # n then
nd.lp.tfp < nd. Wy, — nd.lp.W;, (mod n)

10 nd.rp.tfp < nd.rWy — nd.rp.Wp (mod n)

11 if nd.stride = 1 then

12 nd.tfp < 0 —nd.W; (mod n)

© N O Ok WN

Example 2.9. Figure 8 shows a random member from the family of FFTs realizable by
a size-8 flowgraph. Consider node nd(1,0,3). Since nd.stride # n, we assign a random
integer (mod 8) of 3 to nd.W},. Following Algorithm 1,

nd.rWy = nd. Wy + nd. W (mod n)
=3+ 3 (mod 8)
= 6.
This same process is repeated until W, and rW;, have been assigned for all nodes with
stride # n in the flowgraph. Nodes with a single input, shown as dotted, always have
Wy = 0 following Definition 2.4. Next, actual twiddle factors are computed from the weight

assignments. Again consider node nd(1,0,3) and the computation of twiddle factors for
that node’s parents:

nd.lp.lt fp = nd. Wy, — nd.lp.W; (mod n)

=3—1 (mod 8)
=2
nd.rp.ltfp = nd.orWy — nd.rp.Wp (mod 8)
=6 —2 (mod 8)
=4.

Since nd has no children nodes (nd.stride = 1) we must compute its twiddle factor as

nd.tfp =0 —nd.lp.W; (mod n)
=0—3 (mod 8)
=5.

This process is repeated until all twiddle factors are assigned.
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Figure 8. Size-8 Random FFT Flowgraph

3. Searching a Family of FFT Algorithms

In Section 2, a flowgraph representation of common power-of-two FFTs is developed that
defines an invariant weight stride, Wy, for each node in the flowgraph. Algorithm 1 uses
the weight stride invariants to generate a new assignment of twiddle factors and hence a
unique FFT. Since Algorithm 1 is arbitrary, a rich solution space of valid FFTs, called a
family, results. In this section, we characterize the size of this family, specify a family as a
Satisfiability Modulo Theory (SMT) problem, and demonstrate SMT solver-based search of
this solution space. Although this search can be directed in various ways, we use it to prove
the lowest total arithmetic complexity (fewest required FLOPs) when all twiddle factors

are n'? roots of unity.

3.1 The Size of a Family

The solution space of valid FFTs for a given flowgraph is extremely large!

Definition 3.1. A size-n flowgraph’s solution cardinality is 271022719827 and is the
number of valid FFTs realizable by the given flowgraph. By direct examination of Algorithm
1, each node nd in a size-n flowgraph, where nd.stride # n, is arbitrarily assigned some
integer (mod n) to nd.Wj. Thus, there are n = 2logz2m possible choices for a single node’s
Wp. And, since there are nlogs n nodes in the flowgraph where nd.stride # n, there are
(2losznynlogan — gnlogynlogan poggible assignments of all W, in a size-n flowgraph.
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Example 3.1. For a size-256 flowgraph, there are

solution cardinality = 22°61082 256108, 256 _ 916384

valid FFTs possible. One can better appreciate the magnitude of this number when re-
minded that the estimated number of atoms in the universe is 2264 and the current fastest
supercomputer performs 244 FLOPs per second. Yet this number is very small when com-
pared to all valid and invalid n** root of unity assignments possible for twiddle factors,
234816 Thus, for this size-256 flowgraph, there is just a 1 in 2'8432 chance of guessing
correct twiddle factors.

Although the solution space is immense, in practice we are only interested in family mem-
bers with desirable qualities, such as fewest required FLOPs, better precision,' improved
performance or ease of implementation on a specific microarchitecture. Consequently, we
need a way to search this space and find these more desirable family members.

3.2 A First SMT Formulation

Because of the way concepts were developed in Section 2, it is straight-forward to model
Algorithm 1 as an SMT problem. This is best illustrated by considering Listing 1, which
shows portions of the SMT model in SMT-LIB 1.2 format[28] that is created to find a lowest
arithmetic complexity instance of a size-16 FFT. After a standard preamble, lines 4 and 5
declare the external inputs nd(2,1,6).W}, and nd(2, 1, 14).W}, which are both 4-bit vectors.
Although not shown in the listing, inputs for all undetermined W3 are included. It is for
these variables that the SMT solver attempts to find a satisfying assignment. For nodes
where nd.stride = n, the value nd.Wj, is predetermined to be 0 and is declared as a constant.
An example of this is shown in line 9 and corresponds to Algorithm 1 line 6. Next, rW}
for all nodes is computed via addition of W} and nd.stride. An instance of this is seen in
line 11 and corresponds to Algorithm 1 line 4. Note that all addition and subtraction is
naturally (mod n) given the fixed-size bitvectors in the SMT formulation. Twiddle factors
for all nodes are computed as illustrated in lines 13 and 14. This corresponds to lines 9-12
of Algorithm 1.

Unlike Algorithm 1, the objective of the SM'T model is to find the lowest arithmetic cost.
For this, we must compute the cost implied by every twiddle factor. Lines 16-18 show the
computation of cost predicates c0, ¢4, ¢6, (0, 4 or 6 FLOPs for multiplication, respectively),
for the left twiddle factor of nd(4,1,2). Not shown in this listing are any necessary predicates
0, ¢2, c4, ¢6 for multiplication cost incurred by the right twiddle factor. Line 19 shows cost
predicates used in an if-then—else (ITE) tree to compute the multiplication FLOPs required
by a node. We compute predicates first and then a numeric cost as the predicates are useful
in defining pruning constraints later. In line 21, a total cost is computed by simply adding
up all node multiplication costs. Finally, line 22 constrains the total cost to be less than
or equal to some constant, and line 23 specifies that this multiplication FLOP constraint is
satisfied. Note that the FLOP count due to a node’s addition is constant for the flowgraphs
under consideration and is not explicitly included in the SMT models.

1. All family members are exact and do not sacrifice numerical accuracy. Imprecision arises from choice of
twiddle factors with values very close to zero and consequent floating-point representation limitations.
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1 (benchmark examplel

2 :logic QF_BV

3 ...

4 :extrafuns ((Wb_2 1 6 BitVec[4]))
5 c:extrafuns ((Wb_2 1 14 BitVec[4]))
6 ...

7 :formula

8 ...

9 (let (?Wb_16_14 0 bv0[4])

10 ...

11 (let (?7rWh 2 1 6 (bvadd Wb 2 1 6 bv6[4]))
12

13 (let (?1tfp_4 1 12 (bvsub Wh 2 1 6 ?Wb_4 1 12))

14 (let (?ltfp_4_3_12 (bvsub ?rWb_2 1 6 ?Wb_4 3 12))

15 ...

16 (flet ($c0_4 1 12 (= (extract[1:0] ?ltfp_4 1 12) bv0[2]))

17 (flet (8c4 4 1 12 (and (= (extract[0:0] ?ltfp 4 1 12) bv0]
) bvO

1]) (not $c0_4 1 12)))
18 (flet ($c6_4 1 12 (not (= (extract[0:0] ?ltfp_4 1 12 (1))
bv4[4

19 (let (7cost_4 1 12 (ite $c6_4 1 12 bv6[4] (ite Scd 4 1 12 [4] bv0[4])))
20 ..

21 let (?totalcost (bvadd ?cost_2_2_ 1 (bvadd ?7cost_4_1_12 ?cost_4_3_12))

22 flet ($maxcost (bvule ?totalcost bv22[4]))

(
(

23  $maxcost
)

)
Listing 1. Sample SMT Code

In practice, more care is given to the total cost addition seen in line 21. A balanced adder
tree is constructed, where each add uses only as many bits as required for the worst case.
Furthermore, following the recursive structure in the FFT apparent from the polynomial
view, cost for smaller FFTs are computed first and then combined to compute the cost for
larger parent FFTs. This total cost computation is effectively a pseudo-Boolean constraint,
and we have tried implementing it as an if-then—else (ITE) tree similar to the ROBDD-
techniques described in [13]. Our experience is that the adder tree is 2-3 times better
in terms of SMT computation time for this particular problem with the Boolector SMT
solver[4]. We did not implement the sorter-based technique described in [13].

To find the lowest arithmetic complexity, the SMT model is repeatedly solved, each
time with a lower value for the constant seen in line 22. At some point the model becomes
unsatisfiable and the lowest possible arithmetic complexity is known. Unfortunately, this
straight-forward implementation does not scale up. For flowgraphs of size-32, the time
for computing the unsatisfiability of a 455 FLOP solution requires 30 seconds using the
Boolector solver [4] on a 64-bit Intel Core i7 Linux machine. At size-64 and for unsatisfiable
cost of 1159 FLOPs, we reach our timeout of 24 hours without determining unsatisfiability.

3.3 Cost Symmetries

As formulated so far, the SMT model supports the full range of possible values for each
twiddle factor since each twiddle factor is modeled as a size-m bitvector. This much infor-
mation is not necessary for finding the lowest possible arithmetic complexity, and only adds
to the complexity of the model. Instead, it is possible to express every twiddle factor as

WP — (o= (tfp (mod n/4)) tfp (mod n/s).
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In this expression, wflf p=(tfp (mod /1)) specifies the quadrant in which wflf P lies and is always a

free multiplication by 1,—1,i or —i. Consequently, the portion of wflf P that solely contributes
to multiplication cost can be represented by just a quarter of the n** roots of unity and is
defined as wﬁbf P= wflf p (mod /4) " p, simplify the SMT model and upcoming partitioning, we
suppress the quadrant rotations, wflf p=(t/p (mod v/ 4)), and only reason with 1,,.

Multiplication of two ), is well defined and can be expressed as modular arithmetic.
Consider the multiplication

a+b (modn) _ , .a b
Wy, = WpWy,

which can be re-expressed as

wz—&-b—(a—i—b (mod n/4)) (mod n)wg—i-b (mod n/a) _ wg—(a (mod n/4))¢ng—(b (mod "/4)),¢Z

If all w,, specifying quadrant rotations are ignored, multiplication of two 4, is just
b dn, b
Y0 Cmod ) = gl

which can be expressed easily using modular arithmetic in the SMT model.

From the bitvector perspective, suppressing w;,, quadrant rotations means that the two
most significant bits of every weight on base, W} or rWp, need not be included in the SMT
model. The SMT solver finds a satisfying assignment for all but the two most significant
bits of every weight on base. The two most significant bits are then picked at random as
done in Algorithm 1 without altering cost. In the end, all bits must be assigned to realize
a correct FFT.

Eliminating these cost symmetries in the SMT model reduces a size-n flowgraph’s solu-
tion cardinality to 271082 7((log27)=2) "For g size-256 flowgraph, this is a substantial reduction
in the size of the solution space from 216384 to 212288  Computation time for proving that
a size-32 flowgraph has no solution with total cost equal to or less than 455 FLOPs is now
27 seconds. The timeout of 24 hours is still reached for a size-64 flowgraph constrained to
1159 FLOPs. It is possible that the SMT computation time improves only modestly since
the SMT solver is detecting these cost symmetries without explicit help.

3.4 Butterflies

The next three techniques to simplify and partition the SMT model require reasoning with
FFT butterflies. Although FFT butterflies are a well established idea, we define and review
concepts relevant to our SMT model.

Definition 3.2. A size-¢ butterfly is any subgraph of a size-n FFT flowgraph that is
graph isomorphic to a size-¢ FFT flowgraph where ¢ < n. A butterfly’s canonical label is
bf (nd.stride, nd.base,nd.Ws, q) for the single node nd € bf such that nd.stride, nd.base and
nd.Wy are less than or equal to the stride, base and Wy of any other node in the butterfly.
As with all FFT flowgraphs considered in this paper, ¢ must be some power of two.

Example 3.2. In Figure 5, the butterfly bf(1,0,0,2) contains the four nodes nd(1,0,0),
nd(1,0,8), nd(2,0,0) and nd(2,1,0). The expected traditional butterfly structure is clearly
seen with the node used for identification, nd(1,0,0), at the bottom left. This same node,
nd(1,0,0), is also used to identify the size-4 butterfly bf(1,0,0,4) which contains 12 nodes
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and is also clearly visible. Less obvious are small butterflies that appear toward the top
of the flowgraph such as bf(4,2,0,2) which contains the four nodes nd(4,2,0), nd(4,2,8),
nd(8,2,0) and nd(8,6,0). The larger butterfly bf(4, 2,0, 4) which contains 12 nodes can also
be traced with nd(4,2,0) anchoring the bottom left corner. Finally, the entire flowgraph in
Figure 5 can be denoted as bf(1,0,0,16).

It is also useful to refer to nodes in an arbitrary butterfly not by canonical node label
but by relative position. To facilitate this, one can view the nodes of a butterfly as forming
a matrix and use matrix row,column indexing to refer to a specific node, nd, .. For example,
for any size-2 butterfly, the top-left corner node is ndg o, the top-right corner node is ndo 1,
the bottom-left corner node is ndy o, and the bottom-right corner node is ndy ;.

Property 3.1. For size-2 and size-4 butterflies in the flowgraph, all W for nodes in the
same row are congruent modulo 7/4. The value to which they are all congruent modulo 7/4 is
referred to as nd, ..Ws. This property arises from the correspondence of Wy in a flowgraph
to the polynomial view as described in Section 2.7.

Example 3.3. Consider the size-4 butterfly bf (1,0, 3,4) from Figure 5. By inspection,

ndo . Ws = {12,12,12,12} =0 (mod n/4)
ndy .. W, = {6,6,14, 14} =2 (mod 7/a)
ndg . Ws = {3,11,7,15} = 3 (mod n/4).

3.5 Shared Twiddle Factors

Our formulation permits two multiplications, by wfff P and w;;tf P per node in the FFT
flowgraph. Although this generality may be useful for some algorithms, we show here that
it is not needed when minimizing the total FLOP count is the objective. In fact, it only
increases the complexity of the SMT model.

Theorem 3.1. For any size-2 butterfly, bf;, such that left and right twiddle factors
are unshared per node in row 0 (ndoc.ltfp # ndoc.rtfp) but shared per node in row 1
(ndy .ltfp = ndy c.rtfp) there exists another size-2 butterfly, bfs, such that left and right
twiddle factors are shared per node for all nodes, that realizes all final weighted sums X (0)
and X (1) possible by bf;. Furthermore, no bf; exists with lower FLOP count than some

bfs.
Proof. The proof is in two parts. First, we prove the existence of three different bfs.
Consider the computation performed by bfy,
X(0) = P (g™ 4 ary® ) (mod n), (1a)
X(l) = Zd1,1-tfp(aowgdo,o-rtfp + alwgdo,Lrtfp) (mod n/4) (1b)
Because of Property 3.1 and Theorem 2.1, ndy « left and right twiddle factors are related
by a common weight stride,
ndO’LwandO’l.ltfp ndO,l'Wb ndoyl.'rtfp
n n _ Un

n
= oI ndo T = oo ndeoripp (mod 7/4).
zpz 0,0 bwz 0,0-ltfp wz 0,0 bwg 0,0-7tfP

ndl,*~Ws i

n
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This simplifies to

wnd(),l-ltfp ndo,1.7tfp

n _ n

ndo,o.ltfp = ndoo.rtfp (mod 7/4), (2)
n n

which directly relates left and right twiddle factors for nodes in row 0 of bf;.
Equations 1 and 2 can be used to derive three different bf,, labeled bfs4, bfop and bfoc.
Butterfly bf24, with ndoo.lftp = ndoo.rtfp = 0, is created by multiplying Equation la by

ndoyo.ltfp ndoyomtfp
1= W and Equation 1b by 1= W,
J f J Itf ndo’o.ltfp ndo’l.ltfp
_ ndi,0.tfp_,ndo,o.ltfp n n
X(0) = (¥n n a0 omiy T O agoagp) (mod /4)
n n
ndo,0.rtfp ndo,1.7tfp
X(1) = @t eI g i) (mod ).

ndo,0.1tfp ai ndo,0.1tfp
n n

After simplification of twiddle factors, the two twiddle factors applied to ag are now shared
(42) and the two twiddle factors applied to a1 are also shared due to Equation 2.
Butterfly bfop, with ndp ¢.7t fp made equal to ndg o.lt fp, is created by multiplying Equa-

”d0,0'ltfpwnd0,0"rtfp

tion 1b by 1 = Y

n n
ndg o-ltfp ndgo-rtfpr
n wn

X(0) = wzdl,o.tfp(a0¢;zdo,o.ltfp + al¢zdo,1.ltfp) (mod n/a)

ndo,0.7tfp wndoyo.ltfpwndo,o.rtfp wndoyo.ltfpwnd()’l.rtfp
n n n n

_ ndl,l.tfp /(/}n
X(l) = ( n ndop.ltfp )(CLO nd0,0~rtfp T a1
n n

) (mod n/4).

ndp0.rtfp
n

Again from direct inspection and application of Equation 2, every node shares left and right
twiddle factors.
Butterfly bf3c, with ndg ./t fp made equal to ndo,o.7t fp, is created by multiplying Equa-

ndO’().ltfpwndO,().rtfp

tion la by 1 = wgdo’o_ltfpwgdoyo.rtfp7
b oif ndo,o.ltfp wndo,o-ltfpwndo,oﬂ“tfp w”dO,l .ltfpwndo,o.rtfp
_ ¢.ndiotfp ¥n n n n n
X(0) = (¢n ndo,o.thp)(ao ndo,o.1t fp T ndo,o-It fp ) (mod 7/4)
n n n

X(1) = ¢Zd1,1.tfp(a0¢2do,o.rtfp +a1¢2d0,1.rtfp) (mod n/4)

Here, too, every node shares left and right twiddle factors.

Second, exhaustive search with SMT is used to prove that no bf; exists with lower FLOP
count than some bfy. The SMT-based proof is a miter between bf; and bfo4, bfop and bfoc.
The bf; side of the miter is a size-2 FFT modeled in SMT as described in Section 3.2. Ad-
ditional constraints that nd; o.ltfp = ndio.rtfp and ndy 1.0t fp = ndy 1.rt fp are added for
bfi. The bfs side of the miter includes models for all three cases A, B and C. These are
also modeled in SMT as described in Section 3.2 but with the additional constraint that
each node has just one twiddle factor, ¢fp. Furthermore, the constraints bfs4.ndgo = 0,
bfap.ndoo.tfp = bfi.ndoo.ltfp, and bfac.ndoo.tfp = ndoo.rtfp are included with the re-
spective bfs models. Input values a; with arbitrary initial weights on base ndy..W; and
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row weight strides nd; .Ws are common to all bf; and bfy. The free variables decided by
the SMT solver include these common initial weights on base and row weight strides as well
as weights on base per node for all row 1 nodes in bf; and bfs. FLOP counts for bfi, bfaa,
bfop and bfyc, are individually and explicitly tallied within the SMT model. The question
posed to the SMT solver is to find a bf; with lower FLOP count than bfo4, bfop or bfac.
The theorem is proved for some n if the SMT solver returns unsatisfiable. The proof can
be run once for every size-n FFT flowgraph under consideration, or induction can be used
to establish the result for n + 1 and higher. O

Example 3.4. Consider the concrete computation performed by some bf; from a size-16
FFT flowgraph expressed as,

X(0) = ¢fs(aopis + aris) (mod n/a)
X(1) = ¢fs(aoyis + arls) (mod n/a).

By substituting into Equation 2, we see that this is a valid butterfly with weight stride
adhering to Property 3.1,

3 1

Zi’ = 2232 = ¢¥s (mod n/4).
Some sharing can occur during the complex multiplication of ap and a; with these left
and right twiddle factors since Re (ig) = Tm (¥35) and Re (¥3s) = Tm (i). Hence, the
multiplication FLOP count for bf; is only 16 =8 +8 + 0+ 0.

Butterfly bf4 has only a ¥ twiddle factor applied to ao,
X(0) = ¢ig(aoyls + a19is) (mod n/a)
X (1) = ¢ig(aoyls + ar19is) (mod n/a).
Note that the twiddle factors applied to ag and ay, ¥, are shared for X (0) and X (1). The
results for X (0) and X (1) are still equivalent to bf; as the final twiddle factors, nd; ..t fp,
are now adjusted by factoring out 914 and 13, respectively. The total multiplication cost
for bfo4 is 16 =0+ 4 4 6 + 6, which is the same as bf.
Butterfly bfop has only a i twiddle factor applied to ag,
X(0) = ¢f5(aotig + a19i) (mod n/a)
X (1) = ¢is(asi + ar19fs) (mod n/a).
The 134 is factored out of the sum in X (1) to maintain equivalence with bf;. The total
cost for bfop is also 16 =6+ 6 + 0 + 4.
Butterfly bfoc has only a 135 twiddle factor applied to ag,
X(0) = ¢ig(aodls + arbis) (mod n/a)
X (1) = ¢f5(agls + ar1is) (mod n/a).
The 1% is factored out of the sum in X (0) to maintain equivalence with bf;. The total cost
for bfoc is also 16 = 6 + 6 + 4 + 0. Although all butterflies in this example have the same
multiplication cost, this is not always the case in general. The SMT portion of the proof of

Theorem 3.1 shows that at least one case of bfs will have FLOP count less than or equal
to bf1
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The definition of bf; in Theorem 3.1 requires that twiddle factors be shared per node in
row 1, ndy c.ltfp = ndi ..rt fp. Butterflies meeting this constraint only occur at the bottom
of the FFT flowgraph, where a single weight may be applied to some X (k). But after
applying Theorem 3.1 to all terminal size-2 butterflies in the bottom row, we now have
shared twiddle factors in the next to the bottom row of the FFT flowgraph. Therefore,
Theorem 3.1 can be applied iteratively to the entire flowgraph, starting from the bottom
and proceeding to the top, so that all nodes have a single twiddle factor, ¢ fp, without any
FLOP count penalty.

Property 3.2. For any size-2 butterfly from a FFT flowgraph, if all nodes have a single
shared twiddle factor ¢fp, then ndy o.W) = ndy1.W, (mod n/4). This is because nd; o and
ndy 1 both have the same left parent with the same ¢fp (mod 7/4) applied.

Given Property 3.2, Algorithm 1 can now be updated so that the SMT formulation
assigns a weight on base per size-2 butterfly and not per node. Instead of assigning a
random W}, per node as seen in line 3 of the algorithm, a random W), is assigned per bottom
two nodes of every size-2 butterfly. This reduces the number of free W} variables by two
and substantially speeds up the SMT-based search. Shared twiddle factors in the SMT
model reduce a size-n flowgraph’s solution cardinality to 2% 1982 ™((0827)=2) " For 4 size-256
flowgraph, this further reduces the solution space to 26144, Computation time for proving
that a size-32 flowgraph has no solution with total cost less than or equal to 455 FLOPs is
now 3.5 seconds. The timeout of 24 hours is still reached for a size-64 flowgraph constrained
to 1159 FLOPs.

3.6 Partitioning

Every SMT model formulated so far has been monolithic, and it has been computationally
difficult to prove the lowest arithmetic complexity for any FFT larger than size-32. In this
section, we show that analysis of butterflies at the top and bottom of the flowgraph can be
used to partition larger FFTs into several smaller SMT models that can be solved. This
analysis is facilitated by explicitly writing out the final weight on base computations, with
all operations congruent (mod n/4), for an arbitrary size-4 butterfly:

X(0).Wp = ndao.tfp+ ndio.tfp+ ndoo.tfp+ ndoo.Ws

0). Wy = ndao.tfp+ndiotfp+ndoo.tfp+ndy2.Wy —ndy . W
= ndao.tfp +ndi1.tfp+ndyi.tfp+ ndy1. Wy — nda . W
= ndoo.tfp+ndi1.tfp+ndos.tfp+ ndys. Wy —nde . Ws —ndy . W
=ndy1.tfp+ndio.tfp+ndoo.tfp+ ndoo. Wy
= ndy1.tfp+ndio.tfp+ndo2.tfp+ ndo2 Wy — ndy . W
=ndy1.tfp+ndia.tfp+ndoi.tfp+ ndo1. Wy — nds . Wi
2). Wy =ndo1.tfp+ndi.tfp+ndys.tfp+ ndys. Wy — nde . Wy —ndy . Ws  (3)
1). Wy =ndaz.tfp+ ndi3.tfp+ndoo.tfp+ndoo.Wp
1) Wy =ndaz.tfp+ ndis3.tfp+ndoa.tfp+ndo2. Wy — ndy . Wi

jalaaBaBalalalalalala
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DWW, = nd2,4.tfp + ndl,g.tfp + nd(),o.tfp + ndoyo.Wb
HW, = nd2,4.tfp + ndl,g.tfp + nd072.tfp + ndO,Q.Wb — ndL*.Ws
HW, = nd274.tfp + nd1,4.tfp + nd071.tfp + ndo,l.Wb — nd27*.Ws

X(
X(
X(
X(4). Wy =ndaa.tfp+ndiatfp+ndos.tfp+ ndo3.Wy — nda . Wy — ndy . W.

).
).
).
).

All weights on base internal to the butterfly have been eliminated by repeated substitution.
All weight strides for nodes in the same row are congruent due to Property 3.1. It is
instructive to trace all 16 paths from an input operand to an output value for a size-
4 butterfly and verify that the weight on base computation for that path is included in
Equation 3.

3.6.1 PARTITIONING USING ORIGINAL BUTTERFLIES

At the top of a flowgraph, all a; have a weight of 1, w?. Butterflies that have input values
which are some of these original a; are called original butterflies. Analysis of original
butterflies can exploit this known weight on a; to partition the FF'T flowgraph and hence
the SMT model.

Property 3.3. The weight stride for all nodes in any butterfly that includes only nodes
belonging to f mod z* — 1, z* + 1, 2* — ¢ and z* + 4 from the polynomial factor tree is
congruent to 0 (mod n/4). This follows from the weight stride relationship to the polynomial
view established in Section 2.7.

Example 3.5. Consider the size-4 original butterfly bf(4,2,0,4) from Figure 5. By in-
spection, W for all nodes in this butterfly {0,4,8,12} is congruent to 0 (mod 4). All size-4
original butterflies, and some larger, exhibit Property 3.3.

Theorem 3.2. For any arbitrary size-4 original butterfly, bf;, there exists another size-4
butterfly, bfs, which has zero-cost twiddle factors for nodes in rows 0 and 1, such that all
realizable final weighted sums X (k) of bf; can be realized by bfy. Furthermore, no bf;
exists with lower FLOP count than this bfs.

Proof. The proof is in two parts. First, to prove all realizable final weighted sums of
bfi can be achieved by bfs, we substitute 0 for all initial weights (ndp..W; = 0), for all
twiddle factors in rows 0 and 1 (ndo..tfp = ndi«tfp = 0) and for all weight strides
(ndq «.Ws = ndy ».Ws = 0), into the expressions from Equation 3:

X (0).W, =ndao.tfp+0+0+0

X (0).W, =ndao.tfp+0+0+0—-0
X(0). Wy = ndao.tfp+0+0+0—0
X(0).W, =ndao.tfp+0+0+0—-0—-0
X(2) Wy, =nda1.tfp+0+0+0
X(2)Wy=nd1.tfp+0+0+0-0
X(2)Wy=ndo1.tfp+0+0+0-0
X(2)Wy=ndo1.tfp+0+0+0—-0-0
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X(1).Wpy = ndos.tfp+0+0+0

X(1).Wy =ndastfp+0+0+0-0
X(1).Wy =ndastfp+0+0+0-0
X)Wy, =ndostfp+0+0+0-0-0
X)Wy =ndostfp+0+0+0

4 .WbEndQA.tfp—l-O'f‘O—f—O—O
4 .WbEnd274.tfp+0+0+0—O
4 .sznd2,4.tfp+0+0+0—0—0

By direct inspection we establish that any final weight on base can be realized by twiddle
factors of nodes only in the last row.

Second, exhaustive search with SMT is used to prove that no bf; exists with lower FLOP
count than its bfy. The SMT proof is a miter that includes bf; and bfs. The bfy side of
the miter is a direct translation to SMT of the final weight on base computations just seen.
The bf; side of the miter is created by substituting 0 for all initial weights (ndg . W} = 0)
and for all weight strides (ndy«.Ws = nda.Ws = 0) in the expressions from Equation
3. Final weights bf;.X (k).W}, are required to be equivalent to corresponding final weights
bfs. X (k). Wy. FLOP counts for bf; and bfy are individually and explicitly tallied within
the SMT model. The question posed to the SMT solver is to find a bf; with lower FLOP
count than bfy. The theorem is proved for some n if the SMT solver returns unsatisfiable.
The proof can be run once for every size-n FFT under consideration, or induction can be
used to establish the result for n + 1 and higher. O

This theorem appears to conflict with decimation-in-time FFTs, such as shown in Figure
5, where twiddle factors with cost appear in the first two rows of the FFT. Consider the
size-4 butterfly bf(4,2,0,4) from Figure 5. There is multiplication cost at internal nodes
nd(8,2,8) and nd(8,6,8). But the twiddle factor, nd(8,2,8).w?; can be factored out and
pushed down to the children nodes nd(4,2,4) and nd(4,2,12). Likewise, an w?; must also
be factored out of nd(8, 6,8) to maintain algebraic correctness. After factoring out the w¥y,
all multiplication cost occurs on the bottom row of bf(4,2,0,4) and the total cost remains
24 FLOPs. Globally, there is now no size-4 original butterfly with cost in the first two rows.

Because of Theorem 3.2 and the recursive structure of the FF'T, we can now partition
the FFT flowgraph when solving for minimum total arithmetic complexity. In general, we
must solve for all FFTs corresponding to f mod z* —4 and z* 414 branches in the factor tree.
For a size-n FFT, this requires solving SMT models for pairs of size-p butterflies, for all p
from 1 up to n/4. In practice, for values of p = 8 the problem becomes trivial and is used as
the terminal case of partitioning. The most difficult partition of a size-n FFT flowgraph,
a size-7 butterfly, will have a solution space of 2§ logz 1 ((log21)=2) ' Ty more concrete terms,
the largest SM'T models required to solve a size-256 flowgraph are for two size-64 butterflies
corresponding to the f mod z% — i and 2% + 4 branches of the factor tree. One of these
size-64 butterflies has a solution space of 21152,

Computation time for proving that a partitioned size-64 FFT flowgraph has no solution
with total cost equal to or less than 1159 FLOPs is now 2.8 seconds. Our timeout of 24
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hours is reached when attempting to prove that a size-128 FFT flowgraph has no solution
with total cost equal to or less than 2824 FLOPs.

3.6.2 PARTITIONING USING TERMINAL BUTTERFLIES

At the bottom of a flowgraph, the weight on base required for each final result X (k) is
known. This enables analysis of terminal butterflies, or butterflies producing some final
values of X (k), so that the model may be further partitioned.

Theorem 3.3. For any arbitrary size-4 terminal butterfly, bf;, there exists another size-4
butterfly, bfs, which has zero-cost twiddle factors for nodes in rows 1 and 2, such that all
realizable final weighted sums X (k) of bf; can be realized by bfy. Furthermore, no bf;
exists with lower FLOP count than this bfs.

Proof. The proof is in two parts. First, to prove all realizable final weighted sums of bf; can
be achieved by bfa, we substitute 0 for all final weights (X (k).W}, = 0) and for all twiddle
factors in rows 1 and 2 (ndy «.tfp = nda .t fp = 0) into the expressions from Equation 3:

X(0). W, =0=0+4 0+ ndyo.tfp+ ndoo.Wp

X(2) W, =0=0+0+ndyo.tfp+ ndoo.Ws
X(1).W,=0=0+0+ndyo.tfp+ ndoo.Ws

X(4) W, =0=0+0+ndyo.tfp+ ndoo.Ws
X(0).W,=0=0+0+ndyo.tfp+ ndoo. Wy, —ndy «.Ws
X(2).W,=0=0+0+ndy2.tfp+ ndo2. Wy — ndy . Ws
X(1).Wp,=0=0+0+ndy2.tfp+ ndo2. Wy — ndy . Ws

X(4) W, =0=0+0+ndy2.tfp+ ndo2. Wy — ndy . Ws

X(0). W, =0=0+ 0+ ndo1.tfp+ ndo,1.Wp — nda . W;

X(2) W, =0=0+0+ndo.tfp+ ndo1.Wy — nda . W;

X(1) W, =0=0+4+ 0+ ndo1.tfp+ ndo,1.Wp — nda . W;

X(4) W, =0=0+4+ 0+ ndo1.tfp+ ndo,1.Wy — nda . W
X(0).W, =0=0+0+ndy3.tfp+ ndoz Wy — nda . Ws — ndy . Ws
X(2) W, =0=0+0+ndyz.tfp+ ndoz. Wy — nda . Ws — ndy . Ws
X)W, =0=0+0+ndyz.tfp+ ndoz. Wy — nda . Ws — ndy . W
X4) W, =0=0+0+ndyz.tfp+ ndoz. Wy —nda . Ws — ndy . W

Rows have been reordered to group common twiddle factors. By direct inspection we
establish that a final weight on base of 0 for all X (k) can be realized by twiddle factors of
nodes only in the first row.

Second, exhaustive search with SMT is used to prove that no bf; exists with lower
FLOP count that its bfy. The SMT proof is a miter that includes bf; and bfs. The
bfs side of the miter is a direct translation to SMT of the final weight on base computa-
tions just seen. The bf; side of the miter is created by substituting 0 for all final weights
(X (k).Wp = 0) in the expressions from Equation 3. Input values ndp «.Wj and row weight
strides, ndy «.Ws,nds «.W,, are common to bf; and bfs. FLOP counts for bf; and bfs are
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individually and explicitly tallied within the SMT model. The question posed to the SMT
solver is to find a bf; with lower FLOP count than bfs. The theorem is proved for some n if
the SMT solver returns unsatisfiable. The proof can be run once for every size-n FFT under
consideration, or induction can be used to establish the result for n + 1 and higher. O

This theorem appears to conflict with decimation-in-frequency FFT algorithms, such as
shown in Figure 2, where twiddle factors with cost appear in the last two rows of the FFT
flowgraph. Consider the size-4 butterfly bf(1,0,1,4) from Figure 2. There is multiplication
cost at internal nodes nd(2,1,2) and nd(2,1,6). But the twiddle factor, nd(2,1,2).wi can
be distributed and pushed up to the parent nodes nd(4,1,4) and nd(4,3,4). Likewise,
an wi must also be factored out of nd(2,1,6) to maintain algebraic correctness. Now all
multiplication cost occurs in the top row of bf(1,0,1,4) and the total cost remains the
same. Globally, there is now no size-4 terminal butterfly with cost in the last two rows.
Note that for this a FFT so small, this configuration of twiddle factors now fails conditions
for partitioning by original butterflies. For this reason, combined original and terminal
partitioning is only applicable to size-16 and larger FFT flowgraphs.

By Theorem 3.3 and the recursive structure of the FFT, we can now further partition
the FFT flowgraph when solving for minimum FLOP count. In general, we must solve for
all FFTs corresponding to f mod * — ¢ and z* + ¢ branches in the factor tree, but now
each branch can be partitioned into four smaller equally sized FFTs. For a size-n FF'T, this
requires solving SMT models for groups of 8 size-p butterflies for all p from 1 up to {5. In
practice, for values of p = 8 the problem becomes trivial and that is used as the terminal case
of partitioning. The most difficult partition of a size-n FF'T flowgraph, a size-{z butterfly,
will have a solution space of 23z 1°82 15 (lg2)=2) " I concrete terms, the largest SMT models
required to solve a size-256 flowgraph are eight size-16 butterflies corresponding to the f
mod % — i and 2% 4 i branches of the factor tree. One of these size-16 butterflies has a
solution space of 2192

We can now prove the surprising result that size-256 FFTs exists which require only
6616 FLOPs, rather than the 6664 FLOPs required by the traditional split-radix, even
when twiddle factors are of modulus one. Finding a 6616 FLOP algorithm requires 22
seconds to compute when the lowest cost constraint is used for each partition. Just over 5
seconds is required for the toughest size-16 partition. Of course, searching for the lowest
cost in a partition requires repeated SMT runs and consequently the total search time is
higher. To prove that no solution exists with FLOP count lower than 6616 requires 160
seconds total, with the toughest partition requiring just over 50 seconds.

3.7 Symmetry Reductions

We find that there are many FFTs with equivalent final FLOP count yet with different
twiddle factor values. Prior work in twisting[1][24] indicates that this should be expected.
In this section, we highlight two types of symmetry reduction that reduce SMT run times.
Many local symmetry reduction constraints are possible and we experimented with dozens
but found only these two to be of any significance.
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3.7.1 3-NODE SYMMETRIES

A size-2 butterfly is 3-node symmetric if 3 of its 4 nodes require 6 FLOPs for multipli-
cation. Symmetries are eliminated by forcing ndj o.tfp to have no multiplication cost.

Example 3.6. Consider a concrete computation performed by a size-2 butterfly from the
size-32 FF'T flowgraph expressed as

X(0) = ¢y (aosy + a1dy) (mod n/a)
X(1) = ¢iy(aosy + a1vdy) (mod 7/a).

This butterfly requires 18 = 6 + 6 + 6 FLOPs for multiplication. If the 93, is factored out
to “zero” the weight on a; and shared twiddle factors are preserved, these equations can be
expressed as

X(0) = ¢y (aoyy + ary) (mod n/a)
X(1) = ¢35 (aoyy + arvdy) (mod 7/a),

with total multiplication cost of 18 = 6 + 6 + 6 FLOPs again. Alternatively, if the 13, is
factored out to “zero” the weight on ag, these equations can be expressed as

X(0) = ¢3p(aoygy + a13;) (mod n/a)
X (1) = ¢y(aoyhgy + ar93,) (mod n/a),

with total multiplication cost of 12 = 6+ 6 FLOPs. For the values in this example we find a
cost benefit from factoring out the 11,. We must be pessimistic and assume the worse case,
18 = 6 + 6 + 6 FLOPs, since only one weight is guaranteed zero-cost. It is also possible to
“zero” the weight on the X (1) sum by distributing the 1%, and achieve the same 12 FLOP
configuration.

In the SMT model, 3-node symmetric size-2 butterflies are detected and only those with
zero multiplication cost for nd; o are allowed. This is built by defining the following illegal
condition,

ndLo.CG A ((nd070.66 A ndo,l.CG) V (nd(],o.CG VAN nd1,1.06) vV (nd0’1.66 AN ndm.cﬁ)),

for each size-2 butterfly and then requiring the inverse be satisfied in the SMT model.

We have verified with SMT-based proofs like those seen previously that this constraint
doesn’t increase the butterfly’s FLOP count. As in the example, it may lead to a lower FLOP
count if some node other than nd; o has an applied weight of zero. We have formulated
more complex constraints to detect these better cases early but found negligible speed-up
in SMT runs. Instead, we rely on the cost-constraint described in Section 3.2 to eventually
eliminate bad choices. Finally, if the SMT solver happens to choose the better placement
of zero applied weight to begin with, the node is not 3-node symmetric (multiplication cost
is less than 16 FLOPs) and no 3-node symmetric constraint will apply.

29



3.7.2 BorTOM EQUAL-PAIR SYMMETRIES

A size-2 butterfly has equal-pair symmetries if nodes nd; ¢ and nd;,; have multiplication
cost and equal twiddle factors, ndio.tfp = ndy1.tfp. This symmetry is eliminated by
requiring that these identical twiddle factors in row 1 be distributed to row 0 nodes of the
butterfly.

Example 3.7. Consider a concrete computation performed by a size-2 butterfly from the
size-32 FFT flowgraph expressed as

X(0) = ¢y (aothgy + a19y) (mod n/a)
X(1) = ¢y (aoyy + a1vdy) (mod 7/a).

This butterfly requires 12 = 6 + 6 FLOPs for multiplication. If the 3, is distributed, these
equations can be expressed as

X(0)
X(1)

V35 (ao¥sy + ar1y) (mod 7/a)
V3o (aotiy + a1tgy) (mod n/4),

with total multiplication cost of 12 = 6 + 6 FLOPs again. Another example with initial
multiplication cost in row 0 is

X(0) = ¢y (aoy3y + arvly) (mod n/a)
X (1) = ¢y (aoh3y + ar193y) (mod n/a),

with total multiplication cost of 18 = 6 + 6 + 6 FLOPs. After distributing the v3,, this
becomes

X(0) = ¢32(a0¢:§2 + a1¢§2)
X(1) = ¢35 (ao¥3y + arvsy),

with lower multiplication cost of 12 = 6 + 6 FLOPs. For the values in this example we find
a benefit but note that the final FLOP count is never worse than the initial as proved with
SMT.

In the SMT model, bottom equal-pair symmetric butterflies are not allowed. This is
built by defining the following illegal condition,

(—ndi,0.c0) A (ndyo.tfp =ndi1.tfp),

for each size-2 butterfly and then requiring the inverse be satisfied in the SMT model.

We have verified with SMT-based proofs like those seen previously that this symmetry
reduction doesn’t increase the butterfly’s FLOP count. A similar constraint for top equal-
pair symmetric butterflies can be formulated, and even applied in combination with the
bottom equal-pair symmetric constraint with care, but we found negligible speed-up in
SMT runs when doing so.

These two symmetry reduction constraints now bring the total time for finding a 6616
FLOP count solution for a size-256 FFT down to 8 seconds. To prove that no solution
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exists with less than 6616 FLOPs now requires 50 seconds. It is now possible to find a
15128 FLOP count solution for a size-512 FFT in about 11 hours. We gave up on attempts
to find solutions better than 15128 FLOPs after spending more than 14 days. There were
four partitions for which we could not prove unsatisfiable when applying a FLOP count
constraint of the “best found less one.” From experience, we suspect that a 15127 FLOP
solution is most likely unsatisfiable given the dramatic increase in SMT solver run times.

4. Results

Table 1 summarizes our results for SMT-based search of various size FFT flowgraphs. For
size-256 FFTs and larger, we see that algorithms with FLOP count lower than the traditional
split-radix do exist even when all twiddle factors have modulus one. We also show FLOP
counts for the traditional spit-radix and for the Tangent FFT[1], one of the few known
algorithms utilizing Van Buskirk’s optimization, where twiddle factors are scaled and hence
not modulus one. As expected, the required SMT time quickly becomes intractable as larger
FFTs are considered. Yet it is still instructive to consider FFTs of relatively small size as
such FFTs appear in larger FFTs. Finally, we do not know the number of FFT algorithms
meeting these minimum FLOP count constraints but do know that there are many. We
did search for multiple solutions of a size-256 FFT flowgraph partition and found hundreds
before terminating. These solutions have both different values and placement patterns for
twiddle factors with cost.

Tangent | Split-Radix SMT Search
|wn| = * lwn| =1 |wn| =1
Satisfiable Unsatisfiable
FFT Size | FLOPs FLOPs FLOPs | time(s) FLOPs | time(s)
32 456 456 456 | 1.4 x 1071 455 1.5 x 1071
64 1152 1160 1160 | 3.1x107t | 1159 | 3.3x 1071
128 2792 2824 2824 [ 9.3x1071 [ 2823 | 1.1 x 10°
256 6552 6664 6616 | 8.3 x 10° 6615 | 5.0 x 10"
512 15048 15368 15128 | 3.9 x 10* | 151277 | >1 x 10°

Table 1. Lowest FLOP Counts Found by SMT Search

The reduction in FLOP count of FFTs found by SMT search appears to accelerate for
larger n when compared to the Tangent FFT. Our size-256 solution has an advantage of
48 FLOPs when compared to the traditional split-radix FFT whereas The Tangent FFT
has an advantage of 112 FLOPs. At this size, our FFT provides 48/112 = 0.429 of the
advantage of the Tangent FFT. At size-512, this advantage is 240/320 = 0.75. It is unclear if
this approaches the Tangent FFT advantage asymptocially or eventually surpasses it. The
opportunities for optimization may be increasingly richer as partition sizes and the number
of twiddle factors with cost that they contain grow.

We experimented with many of the publicly available SMT solvers listed at [28] but
found that Boolector[4] version 1.4 consistently performed the best for our problem and
formulation. However, all highly ranked SMT solvers were competitive. We also bit-blasted
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our models to the DIMACS CNF format so that we could experiment with publicly available
SAT solvers. Again, we found that the SAT solver at the core of Boolector, Precosat|2]
version 570, performed the best, although other quality solvers also completed with good
times. We specify our models with SMT-LIB 1.2 using quantifier-free formulas over the
theory of fixed-size bitvectors but have found that the only benefit of this is to ease problem
specification and perhaps enable some model preprocessing. If we use Boolector just to bit-
blast our SMT models, which requires negligible time, and then execute Precosat, the total
run times are comparable to if not better than executing Boolector directly on the SMT
models. We have posted our models in various formats[16] as additional benchmarks for
the SAT and SMT communities.

4.1 Algorithm Design

The FFTs found by SMT-based search and posted on our web site[16] are witnesses that
FFTs with lower total FLOP count than the split-radix exist even when all twiddle fac-
tors have modulus one, but are not practical algorithms in their current state. FFTs in
widespread use usually can be defined succinctly in mathematical terms which leads to
very regular patterns of twiddle factors in the FFT flowgraph. It is possible to formulate
SMT constraints that require various forms of regularity in any satisfying solution. In this
way, the techniques described in this paper can be extended to do practical FFT algorithm
design. Although this is a topic for further research, we highlight a few early experiments
here.

The split-radix created by delayed twisting as described by Bernstein[1] and Mateer[24] is
very succinct yet can be used to generate a rich family of highly regular split-radix algorithms
simply by choosing different legal twisting coefficients, (. By examining the twiddle factor
patterns generated by this algorithm, we determine that twiddle factors applied to ordered
coefficients of a polynomial in the factor tree must have a constant stride (twisted), match
constant values as seen in the classic decomposition (delayed twisting), or combine these two
cases (twisting to something other than x* — 1). With constraints formulated and applied
to the SMT model that require this pattern of twiddle factors, we no longer find solutions
with total FLOP count less than the split-radix for size-256 FFT flowgraphs. We do find
solutions with FLOP count equal to the split-radix as expected. This confirms the theorem
by Mateer[24] that combinations of twisting, though very rich, will never lead to an FFT
with FLOP count lower than the split-radix. Although the regularity imposed by twisting
doesn’t support our solutions, other types of regularity might.

The algorithms that use Van Buskirk’s optimization[22][1][19] all start with a version
of the conjugate split-radix FFT[20]. In this algorithm, twiddle factors occur as conjugate
pairs, where the conjugate pair is either at the top or bottom of a size-2 butterfly. The
complex twiddle factors for a conjugate pair can be factored as

cosa(l +itana),cosy(1 +itan~y).

Since « and y are conjugate angles, we know that cosa = cos~y. Van Buskirk’s trick moves
these real scaling factors so that their cost is absorbed by other multiplications. With
constraints formulated and applied to the SM'T model that require twiddle factors to occur
globally as conjugate pairs, we no longer find solutions with total FLOP count less than
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the split-radix for size-256 FFT flowgraphs. We do still find instances with FLOP count
equal to the split-radix. It still may be possible to find solutions where conjugate pairs occur
locally in specific places such that optimizations similar to Van Buskirk’s can be beneficially
applied.

An objective to minimize FLOP count is primarily academic given the capabilities of
modern computing hardware. Other more practical objectives include enhancing precision
or easing implementation. For example, avoiding twiddle factors where the real or imag-
inary part is a number very close to zero may enhance the precision of the final result.
Alternatively, restricting all twiddle factors to some limited set may ease implementation,
and we can formulate a SMT model that does just that. There are size-32 FF'Ts that use
just two non-trivial twiddle factors with cost, plus the free multiplications by 1, —1, ¢ or
—i. The minimum FLOP count for these algorithms is high at 616 compared to 456 for
the split-radix but there may be benefits of having to multiply by just a few constants, es-
pecially in hardware implementations. If we increase the set of allowed non-trivial twiddle
factors for a size-32 FFT to three, the minimum FLOP count is 536. For a size-64 FFT, we
find a 2112 FLOP count solution that uses only non-trivial twiddle factor powers from the
set {7,8,9}. Note that these twiddle factor powers include conjugates so that only three
transcendental function computations or table look-ups are required. We have posted some
examples of these FFTs at [16].

5. Conclusions

This paper presented a Boolean Satisfiability-based proof of the lowest FLOP count required
by FFT algorithms up to size-512 with flowgraphs isomorphic to those generated by common
power-of-two FFTs, and where all twiddle factors are n** roots of unity. Even with these
constraints, we find FFTs requiring fewer FLOPs than the split-radix starting at size-256.
At the core of this proof is a novel way to enumerate all FF'Ts realizable by a given flowgraph.
Partitioning and symmetry reduction techniques are developed to make it possible to prove
FLOP count bounds for larger size-512 FFTs. Finally, because the SAT-based formulation
and search techniques are general, the paper introduced additional search objectives that
mimic twiddle factor patterns from twisting, require conjugate twiddle factor pairs, and
minimize the allowed values of twiddle factors.

Future work is planned in three directions. First, Section 4.1 only highlights FFT
algorithm design possible with techniques described in this paper. We will study the appli-
cability of our techniques to practical FFT algorithm design, with cost objectives ranging
from improved precision to implementation on specific hardware[27]. Second, we seek to
impose regularity on our lowest FLOP count solutions to determine if they can be described
more traditionally as succinct algorithms. This should also help us better characterize the
FLOP savings as the the size of the FFT increases. Finally, we hope to ease the current
constraint that all twiddle factors are n'” roots of unity and thus incorporate optimizations
similar to Van Buskirk’s[22][1][19] directly into our search.
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